
5.1 IntroductIon to Python

We have written algorithms for different problems in
Chapter 4. Let us now move a step further and create
programs using any version of Python 3. But before
learning about Python programming language, let us
understand what is a programming language and how
it works.

An ordered set of instructions to be executed by a
computer to carry out a specific task is called a program,
and the language used to specify this set of instructions
to the computer is called a programming language.

As we know that computers understand the language
of 0s and 1s which is called machine language or low
level language. However, it is difficult for humans to
write or comprehend instructions using 0s and 1s. This
led to the advent of high-level programming languages
like Python, C++, Visual Basic, PHP, Java that are easier
to manage by humans but are not directly understood
by the computer.

A program written in a high-level language is called
source code. Recall from Chapter 1 that language
translators like compilers and interpreters are needed
to translate the source code into machine language.
Python uses an interpreter to convert its instructions
into machine language, so that it can be understood
by the computer. An interpreter processes the program
statements one by one, first translating and then
executing. This process is continued until an error
is encountered or the whole program is executed
successfully. In both the cases, program execution
will stop. On the contrary, a compiler translates the
entire source code, as a whole, into the object code.
After scanning the whole program, it generates error
messages, if any.

“Computer programming
is an art, because it applies

accumulated knowledge
to the world, because it

requires skill and ingenuity,
and especially because
it produces objects of

beauty. A programmer who
subconsciously views himself

as an artist will enjoy what he
does and will do it better.”

– Donald Knuth

Chapter 5

Getting Started with
Python

In this chapter

 » Introduction to
Python

 » Python Keywords
 » Identifiers
 » Comments
 » Data Types
 » Operators
 » Expressions
 » Statement
 » Input and Output
 » Type Conversion
 » Debugging

Ch 5.indd 87 08-Apr-19 12:35:10 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi88

5.1.1 Features of Python
• Python is a high level language. It is a free and

open source language.
• It is an interpreted language, as Python programs

are executed by an interpreter.
• Python programs are easy to understand as

they have a clearly defined syntax and relatively
simple structure.

• Python is case-sensitive. For example, NUMBER
and number are not same in Python.

• Python is portable and platform independent,
means it can run on various operating systems and
hardware platforms.

• Python has a rich library of predefined functions.
• Python is also helpful in web development. Many

popular web services and applications are built
using Python.

• Python uses indentation for blocks and
nested blocks.

5.1.2 Working with Python
To write and run (execute) a Python program, we need
to have a Python interpreter installed on our computer
or we can use any online Python interpreter. The
interpreter is also called Python shell. A sample screen
of Python interpreter is shown in Figure 5.1:

Downloading Python

The latest version of
Python 3 is available on

the official website:

https://www.python.org/

Figure 5.1: Python interpreter or shell

In the above screen, the symbol >>> is the Python
prompt, which indicates that the interpreter is ready
to take instructions. We can type commands or
statements on this prompt to execute them using a
Python interpreter.

Ch 5.indd 88 08-Apr-19 12:35:10 PM

Reprint 2025-26

GettinG Started with Python 89

5.1.3 Execution Modes
There are two ways to use the Python interpreter:

a) Interactive mode
b) Script mode
Interactive mode allows execution of individual

statement instantaneously. Whereas, Script mode
allows us to write more than one instruction in a file
called Python source code file that can be executed.
(A) Interactive Mode
To work in the interactive mode, we can simply type a
Python statement on the >>> prompt directly. As soon as
we press enter, the interpreter executes the statement
and displays the result(s), as shown in Figure 5.2.

Figure 5.2: Python interpreter in interactive mode

Working in the interactive mode is convenient for
testing a single line code for instant execution. But in
the interactive mode, we cannot save the statements for
future use and we have to retype the statements to run
them again.
(B) Script Mode
In the script mode, we can write a Python program in
a file, save it and then use the interpreter to execute it.
Python scripts are saved as files where file name has
extension “.py”. By default, the Python scripts are saved
in the Python installation folder. To execute a script, we
can either:

a) Type the file name along with the path at the
prompt. For example, if the name of the file is
prog5-1.py, we type prog5-1.py. We can otherwise
open the program directly from IDLE as shown in
Figure 5.3.

b) While working in the script mode, after saving the
file, click [Run]->[Run Module] from the menu as
shown in Figure 5.4.

Ch 5.indd 89 08-Apr-19 12:35:11 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi90

Program 5-1 Write a program to show print statement
in script mode.

Figure 5.3: Python source code file (prog5-1.py)

5.2 Python Keywords

Keywords are reserved words. Each keyword has a
specific meaning to the Python interpreter, and we can
use a keyword in our program only for the purpose for
which it has been defined. As Python is case sensitive,
keywords must be written exactly as given in Table 5.1.

Table 5.1 Python keywords

False class finally is return
None continue for lambda try

c) The output appears on shell as shown in
Figure 5.5.

Figure 5.4: Execution of Python in Script mode using IDLE

Figure 5.5: Output of a program executed in script mode

Ch 5.indd 90 21-May-19 11:57:33 AM

Reprint 2025-26

GettinG Started with Python 91

True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

5.3 IdentIfIers

In programming languages, identifiers are names used
to identify a variable, function, or other entities in a
program. The rules for naming an identifier in Python
are as follows:

• The name should begin with an uppercase or a
lowercase alphabet or an underscore sign (_). This
may be followed by any combination of characters
a–z, A–Z, 0–9 or underscore (_). Thus, an identifier
cannot start with a digit.

• It can be of any length. (However, it is preferred to
keep it short and meaningful).

• It should not be a keyword or reserved word given
in Table 5.1.

• We cannot use special symbols like !, @, #, $, %,
etc., in identifiers.

For example, to find the average of marks obtained
by a student in three subjects, we can choose the
identifiers as marks1, marks2, marks3 and avg rather
than a, b, c, or A, B, C.

avg = (marks1 + marks2 + marks3)/3
Similarly, to calculate the area of a rectangle, we can

use identifier names, such as area, length, breadth
instead of single alphabets as identifiers for clarity and
more readability.

area = length * breadth

5.4 VarIables

A variable in a program is uniquely identified by a name
(identifier). Variable in Python refers to an object — an
item or element that is stored in the memory. Value
of a variable can be a string (e.g., ‘b’, ‘Global Citizen’),
numeric (e.g., 345) or any combination of alphanumeric
characters (CD67). In Python we can use an assignment
statement to create new variables and assign specific
values to them.

notes

Ch 5.indd 91 08-Apr-19 12:35:11 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi92

In the program 5-2, the variable message holds string
type value and so its content is assigned within double
quotes " " (can also be within single quotes ' '), whereas
the value of variable userNo is not enclosed in quotes as
it is a numeric value.

Variable declaration is implicit in Python, means
variables are automatically declared and defined when
they are assigned a value the first time. Variables
must always be assigned values before they are used
in expressions as otherwise it will lead to an error in
the program. Wherever a variable name occurs in an
expression, the interpreter replaces it with the value of
that particular variable.

Program 5-3 Write a Python program to find the area
of a rectangle given that its length is 10
units and breadth is 20 units.

#Program 5-3
#To find the area of a rectangle
length = 10
breadth = 20
area = length * breadth
print(area)

Output:
200

5.5 comments

Comments are used to add a remark or a note in the
source code. Comments are not executed by interpreter.

gender = 'M'

message = "Keep Smiling"

price = 987.9

Program 5-2 Write a program to display values of
variables in Python.

#Program 5-2
#To display values of variables
message = "Keep Smiling"
print(message)
userNo = 101
print('User Number is', userNo)

Output:
Keep Smiling
User Number is 101

Ch 5.indd 92 08-Apr-19 12:35:11 PM

Reprint 2025-26

GettinG Started with Python 93

They are added with the purpose of making the source
code easier for humans to understand. They are used
primarily to document the meaning and purpose of
source code and its input and output requirements,
so that we can remember later how it functions and
how to use it. For large and complex software, it may
require programmers to work in teams and sometimes,
a program written by one programmer is required to be
used or maintained by another programmer. In such
situations, documentations in the form of comments
are needed to understand the working of the program.

In Python, a comment starts with # (hash sign).
Everything following the # till the end of that line is
treated as a comment and the interpreter simply ignores
it while executing the statement.

Example 5.1
#Variable amount is the total spending on
#grocery
amount = 3400
#totalMarks is sum of marks in all the tests
#of Mathematics
totalMarks = test1 + test2 + finalTest

Program 5-4 Write a Python program to find the sum of
two numbers.

#Program 5-4
#To find the sum of two numbers
num1 = 10
num2 = 20
result = num1 + num2
print(result)

Output:
30

5.6 eVerythIng Is an object
Python treats every value or data item whether numeric,
string, or other type (discussed in the next section) as
an object in the sense that it can be assigned to some
variable or can be passed to a function as an argument.

Every object in Python is assigned a unique identity
(ID) which remains the same for the lifetime of that object.
This ID is akin to the memory address of the object. The
function id() returns the identity of an object.

In the context of Object
Oriented Programming

(OOP), objects are a
representation of the real
world, such as employee,

student, vehicle, box,
book, etc. In any object
oriented programming

language like C++, JAVA,
etc., each object has two
things associated with
it: (i) data or attributes
and (ii) behaviour or

methods. Further there
are concepts of class and

class hierarchies from
which objects can be

instantiated. However,
OOP concepts are not in
the scope of our present

discussions.

Python also comes under
the category of object

oriented programming.
However, in Python, the

definition of object is
loosely casted as some
objects may not have

attributes or others may
not have methods.

Ch 5.indd 93 08-Apr-19 12:35:11 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi94

Example 5.2
>>> num1 = 20
>>> id(num1)
1433920576 #identity of num1
>>> num2 = 30 - 10
>>> id(num2)
1433920576 #identity of num2 and num1
 #are same as both
refers to #object 20

5.7 Data types
Every value belongs to a specific data type in Python.
Data type identifies the type of data values a variable
can hold and the operations that can be performed on
that data. Figure 5.6 enlists the data types available
in Python.

5.7.1 Number
Number data type stores numerical values only. It is
further classified into three different types: int, float
and complex.

Table 5.2 Numeric data types

Type/ Class Description Examples
int integer numbers –12, –3, 0, 125, 2

float real or floating point numbers –2.04, 4.0, 14.23

complex complex numbers 3 + 4j, 2 – 2j

Boolean data type (bool) is a subtype of integer. It
is a unique data type, consisting of two constants, True
and False. Boolean True value is non-zero, non-null
and non-empty. Boolean False is the value zero.

Figure 5.6: Different data types in Python

Dictionaries

Ch 5.indd 94 15-Jun-21 11:13:29 AM

Reprint 2025-26

GettinG Started with Python 95

Let us now try to execute few statements in interactive
mode to determine the data type of the variable using
built-in function type().
Example 5.3

>>> num1 = 10
>>> type(num1)
<class 'int'>

>>> num2 = -1210
>>> type(num2)
<class 'int'>

>>> var1 = True
>>> type(var1)
<class 'bool'>

>>> float1 = -1921.9
>>> type(float1)
<class 'float'>
>>> float2 = -9.8*10**2
>>> print(float2, type(float2))
-980.0000000000001 <class 'float'>

>>> var2 = -3+7.2j
>>> print(var2, type(var2))
(-3+7.2j) <class 'complex'>

Variables of simple data types like integers, float,
boolean, etc., hold single values. But such variables are
not useful to hold a long list of information, for example,
names of the months in a year, names of students in a
class, names and numbers in a phone book or the list of
artefacts in a museum. For this, Python provides data
types like tuples, lists, dictionaries and sets.

5.7.2 Sequence
A Python sequence is an ordered collection of items,
where each item is indexed by an integer. The three
types of sequence data types available in Python are
Strings, Lists and Tuples. We will learn about each of
them in detail in later chapters. A brief introduction to
these data types is as follows:
(A) String
String is a group of characters. These characters may be
alphabets, digits or special characters including spaces.
String values are enclosed either in single quotation

notes

Ch 5.indd 95 08-Apr-19 12:35:11 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi96

marks (e.g., ‘Hello’) or in double quotation marks (e.g.,
“Hello”). The quotes are not a part of the string, they are
used to mark the beginning and end of the string for the
interpreter. For example,

>>> str1 = 'Hello Friend'
>>> str2 = "452"

We cannot perform numerical operations on
strings, even when the string contains a numeric
value, as in str2.
(B) List
List is a sequence of items separated by commas and
the items are enclosed in square brackets [].
Example 5.4

#To create a list
>>> list1 = [5, 3.4, "New Delhi", "20C", 45]
#print the elements of the list list1
>>> print(list1)
[5, 3.4, 'New Delhi', '20C', 45]

(C) Tuple
Tuple is a sequence of items separated by commas and
items are enclosed in parenthesis (). This is unlike list,
where values are enclosed in brackets []. Once created,
we cannot change the tuple.

Example 5.5
#create a tuple tuple1
>>> tuple1 = (10, 20, "Apple", 3.4, 'a')
#print the elements of the tuple tuple1
>>> print(tuple1)
(10, 20, "Apple", 3.4, 'a')

5.7.3 Set

Set is an unordered collection of items separated by commas
and the items are enclosed in curly brackets { }. A set is
similar to list, except that it cannot have duplicate entries.
Once created, elements of a set cannot be changed.
Example 5.6

#create a set
>>> set1 = {10,20,3.14,"New Delhi"}
>>> print(type(set1))
<class 'set'>
>>> print(set1)
{10, 20, 3.14, "New Delhi"}
#duplicate elements are not included in set

notes

Ch 5.indd 96 08-Apr-19 12:35:11 PM

Reprint 2025-26

GettinG Started with Python 97

>>> set2 = {1,2,1,3}
>>> print(set2)
{1, 2, 3}

5.7.4 None
None is a special data type with a single value. It is
used to signify the absence of value in a situation. None
supports no special operations, and it is neither same
as False nor 0 (zero).
Example 5.7

>>> myVar = None
>>> print(type(myVar))
<class 'NoneType'>
>>> print(myVar)
None

5.7.5 Mapping

Mapping is an unordered data type in Python. Currently,
there is only one standard mapping data type in Python
called dictionary.

(A) Dictionary
Dictionary in Python holds data items in key-value pairs.
Items in a dictionary are enclosed in curly brackets { }.
Dictionaries permit faster access to data. Every key is
separated from its value using a colon (:) sign. The key
: value pairs of a dictionary can be accessed using the
key. The keys are usually strings and their values can
be any data type. In order to access any value in the
dictionary, we have to specify its key in square brackets
[].
Example 5.8

#create a dictionary
>>> dict1 = {'Fruit':'Apple',
'Climate':'Cold', 'Price(kg)':120}
>>> print(dict1)
{'Fruit': 'Apple', 'Climate': 'Cold',
'Price(kg)': 120}
>>> print(dict1['Price(kg)'])
120

5.7.6 Mutable and Immutable Data Types
Sometimes we may require to change or update the
values of certain variables used in a program. However,
for certain data types, Python does not allow us to

Ch 5.indd 97 11/10/2021 10:40:08 AM

Reprint 2025-26

Computer SCienCe – ClaSS xi98

change the values once a variable of that type has been
created and assigned values.

Variables whose values can be changed after they
are created and assigned are called mutable. Variables
whose values cannot be changed after they are created
and assigned are called immutable. When an attempt is
made to update the value of an immutable variable, the
old variable is destroyed and a new variable is created
by the same name in memory.

Python data types can be classified into mutable and
immutable as shown in Figure 5.7.

Let us now see what happens when an attempt is
made to update the
value of a variable.
>>> num1 = 300

This statement
will create an object
with value 300
and the object is
referenced by the
identifier num1 as
shown in Figure 5.8.
>>> num2 = num1

The statement
num2 = num1 will
make num2 refer to
the value 300, also
being referred by
num1, and stored
at memory location
number, say 1000.
So, num1 shares the
referenced location
with num2 as shown
in Figure 5.9.

Figure 5.8: Object and its identifier

Figure 5.9: Variables with same value have same identifier

 Figure 5.7: Classification of data types

Ch 5.indd 98 11/10/2021 10:53:15 AM

Reprint 2025-26

GettinG Started with Python 99

In this manner
P y t h o n
makes the
a s s i g n m e n t
effective by
copying only
the reference,
and not the
data:

>>> num1
= num2 +
100

This statement 1 num1 = num2 + 100 links the
variable num1 to a new object stored at memory location
number say 2200 having a value 400. As num1 is an
integer, which is an immutable type, it is rebuilt, as
shown in Figure 5.10.

5.7.7 Deciding Usage of Python Data Types
It is preferred to use lists when we need a simple iterable
collection of data that may go for frequent modifications.
For example, if we store the names of students of a class
in a list, then it is easy to update the list when some
new students join or some leave the course. Tuples are
used when we do not need any change in the data. For
example, names of months in a year. When we need
uniqueness of elements and to avoid duplicacy it is
preferable to use sets, for example, list of artefacts in a
museum. If our data is being constantly modified or we
need a fast lookup based on a custom key or we need
a logical association between the key : value pair, it is
advised to use dictionaries. A mobile phone book is a
good application of dictionary.

5.8 oPerators

An operator is used to perform specific mathematical
or logical operation on values. The values that the
operators work on are called operands. For example,
in the expression 10 + num, the value 10, and the
variable num are operands and the + (plus) sign is an
operator. Python supports several kinds of operators
whose categorisation is briefly explained in this section.

Python
compares strings

lexicographically, using
ASCII value of the

characters. If the first
character of both the
strings are same, the
second character is

compared, and so on.

 Figure 5.10: Variables with different values have different identifiers

Ch 5.indd 99 08-Apr-19 12:35:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi100

5.8.2 Relational Operators
Relational operator compares the values of the operands
on its either side and determines the relationship among

5.8.1 Arithmetic Operators
Python supports arithmetic operators that are used to
perform the four basic arithmetic operations as well as
modular division, floor division and exponentiation.

Table 5.3 Arithmetic Operators in Python

Operator Operation Description Example (Try in Lab)

+ Addition Adds the two numeric values on
either side of the operator

This operator can also be used to
concatenate two strings on either
side of the operator

>>> num1 = 5
>>> num2 = 6
>>> num1 + num2
11
>>> str1 = "Hello"
>>> str2 = "India"
>>> str1 + str2
'HelloIndia'

- Subtraction Subtracts the operand on the right
from the operand on the left

>>> num1 = 5
>>> num2 = 6
>>> num1 - num2
-1

* Multiplication Multiplies the two values on both
side of the operator

>>> num1 = 5
>>> num2 = 6
>>> num1 * num2
30

Repeats the item on left of the
operator if first operand is a
string and second operand is an
integer value

>>> str1 = 'India'
>>> str1 * 2
'IndiaIndia'

/ Division Divides the operand on the left
by the operand on the right and
returns the quotient

>>> num1 = 8
>>> num2 = 4
>>> num2 / num1
0.5

% Modulus Divides the operand on the left
by the operand on the right and
returns the remainder

>>> num1 = 13
>>> num2 = 5
>>> num1 % num2
3

// Floor Division Divides the operand on the left
by the operand on the right and
returns the quotient by removing
the decimal part. It is sometimes
also called integer division.

>>> num1 = 13
>>> num2 = 4
>>> num1 // num2
3
>>> num2 // num1
0

** Exponent Performs exponential (power)
calculation on operands. That is,
raise the operand on the left to the
power of the operand on the right

>>> num1 = 3
>>> num2 = 4
>>> num1 ** num2
81

Ch 5.indd 100 08-Apr-19 12:35:12 PM

Reprint 2025-26

GettinG Started with Python 101

Table 5.4 Relational operators in Python

Operator Operation Description Example (Try in Lab)
== Equals to If the values of two operands are

equal, then the condition is True,
otherwise it is False

>>> num1 == num2
False
>> str1 == str2
False

!= Not equal to If values of two operands are not
equal, then condition is True,
otherwise it is False

>>> num1 != num2
True
>>> str1 != str2
True
>>> num1 != num3
False

> Greater than If the value of the left-side operand
is greater than the value of the right-
side operand, then condition is True,
otherwise it is False

>>> num1 > num2
True
>>> str1 > str2
True

< Less than If the value of the left-side operand
is less than the value of the right-
side operand, then condition is True,
otherwise it is False

>>> num1 < num3
False
>>> str2 < str1
True

>= Greater than
or equal to

If the value of the left-side operand is
greater than or equal to the value of
the right-side operand, then condition
is True, otherwise it is False

>>> num1 >= num2
True
>>> num2 >= num3
False
>>> str1 >= str2
True

<= Less than or
equal to

If the value of the left operand is less
than or equal to the value of the right
operand, then is True otherwise it is
False

>>> num1 <= num2
False
>>> num2 <= num3
True
>>> str1 <= str2
False

5.8.3 Assignment Operators
Assignment operator assigns or changes the value of
the variable on its left.

Table 5.5 Assignment operators in Python

Operator Description Example (Try in Lab)
= Assigns value from right-side operand to left-

side operand
>>> num1 = 2
>>> num2 = num1
>>> num2
2
>>> country = 'India'
>>> country
'India'

them. Assume the Python variables num1 = 10, num2
= 0, num3 = 10, str1 = "Good", str2 =
"Afternoon" for the following examples:

Ch 5.indd 101 08-Apr-19 12:35:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi102

+= It adds the value of right-side operand to the
left-side operand and assigns the result to the
left-side operand
Note: x += y is same as x = x + y

>>> num1 = 10
>>> num2 = 2
>>> num1 += num2
>>> num1
12
>>> num2
2
>>> str1 = 'Hello'
>>> str2 = 'India'
>>> str1 += str2
>>> str1
'HelloIndia'

-= It subtracts the value of right-side operand from
the left-side operand and assigns the result to
left-side operand
Note: x -= y is same as x = x - y

>>> num1 = 10
>>> num2 = 2
>>> num1 -= num2
>>> num1
8

*= It multiplies the value of right-side operand
with the value of left-side operand and assigns
the result to left-side operand
Note: x *= y is same as x = x * y

>>> num1 = 2
>>> num2 = 3
>>> num1 *= 3

>>> num1
6
>>> a = 'India'
>>> a *= 3
>>> a
'IndiaIndiaIndia'

/= It divides the value of left-side operand by the
value of right-side operand and assigns the
result to left-side operand
Note: x /= y is same as x = x / y

>>> num1 = 6
>>> num2 = 3
>>> num1 /= num2
>>> num1
2.0

%= It performs modulus operation using two
operands and assigns the result to left-side
operand
Note: x %= y is same as x = x % y

>>> num1 = 7
>>> num2 = 3
>>> num1 %= num2
>>> num1
1

//= It performs floor division using two operands
and assigns the result to left-side operand
Note: x //= y is same as x = x // y

>>> num1 = 7
>>> num2 = 3
>>> num1 //= num2
>>> num1
2

**= It performs exponential (power) calculation on
operators and assigns value to the left-side
operand
Note: x **= y is same as x = x ** y

>>> num1 = 2
>>> num2 = 3
>>> num1 **= num2
>>> num1
8

Ch 5.indd 102 08-Apr-19 12:35:12 PM

Reprint 2025-26

GettinG Started with Python 103

5.8.5 Identity Operators

Identity operators are used to determine whether the
value of a variable is of a certain type or not. Identity
operators can also be used to determine whether two

5.8.4 Logical Operators
There are three logical operators supported by Python.
These operators (and, or, not) are to be written in
lower case only. The logical operator evaluates to either
True or False based on the logical operands on either
side. Every value is logically either True or False. By
default, all values are True except None, False, 0
(zero), empty collections "", (), [], {}, and few other special
values. So if we say num1 = 10, num2 = -20, then
both num1 and num2 are logically True.

Table 5.6 Logical operators in Python

Operator Operation Description Example (Try in Lab)
and Logical AND If both the operands are

True, then condition
becomes True

>>> True and True
True
>>> num1 = 10
>>> num2 = -20
>>> bool(num1 and num2)
True
>>> True and False
False
>>> num3 = 0
>>> bool(num1 and num3)
False
>>> False and False
False

or Logical OR If any of the two operands
are True, then condition
becomes True

>>> True or True
True
>>> True or False
True
>>> bool(num1 or num3)
True
>>> False or False
False

not Logical NOT Used to reverse the logical
state of its operand

>>> num1 = 10
>>> bool(num1)
True
>>> not num1
>>> bool(num1)
False

Ch 5.indd 103 08-Apr-19 12:35:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi104

Table 5.8 Membership operators in Python
Operator Description Example (Try in Lab)

in Returns True if the variable/value is found in the
specified sequence and False otherwise

>>> a = [1,2,3]
>>> 2 in a
True
>>> '1' in a
False

not in Returns True if the variable/value is not found in
the specified sequence and False otherwise

>>> a = [1,2,3]
>>> 10 not in a
True
>>> 1 not in a
False

5.9 exPressIons
An expression is defined as a combination of constants,
variables, and operators. An expression always
evaluates to a value. A value or a standalone variable
is also considered as an expression but a standalone
operator is not an expression. Some examples of valid
expressions are given below.
 (i) 100 (iv) 3.0 + 3.14
 (ii) num (v) 23/3 -5 * 7(14 -2)
(iii) num – 20.4 (vi) "Global" + "Citizen"

Table 5.7 Identity operators in Python

Operator Description Example (Try in Lab)
is Evaluates True if the variables on either

side of the operator point towards the same
memory location and False otherwise.
var1 is var2 results to True if id(var1) is
equal to id(var2)

>>> num1 = 5
>>> type(num1) is int
True
>>> num2 = num1
>>> id(num1)
1433920576
>>> id(num2)
1433920576
>>> num1 is num2
True

is not Evaluates to False if the variables on
either side of the operator point to the same
memory location and True otherwise. var1
is not var2 results to True if id(var1) is not
equal to id(var2)

>>> num1 is not num2
False

variables are referring to the same object or not. There
are two identity operators.

5.8.6 Membership Operators
Membership operators are used to check if a value is a
member of the given sequence or not.

Ch 5.indd 104 08-Apr-19 12:35:12 PM

Reprint 2025-26

GettinG Started with Python 105

5.9.1 Precedence of Operators
Evaluation of the expression is based on precedence of
operators. When an expression contains different kinds
of operators, precedence determines which operator
should be applied first. Higher precedence operator is
evaluated before the lower precedence operator. Most
of the operators studied till now are binary operators.
Binary operators are operators with two operands.
The unary operators need only one operand, and they
have a higher precedence than the binary operators.
The minus (-) as well as + (plus) operators can act as
both unary and binary operators, but not is a unary
logical operator.

#Depth is using - (minus) as unary operator
Value = -Depth
#not is a unary operator, negates True
print(not(True))

The following table lists precedence of all operators
from highest to lowest.

Table 5.9 Precedence of all operators in Python

Order of
Precedence

Operators Description

1 ** Exponentiation (raise to the power)
2 ~ ,+, - Complement, unary plus and unary minus
3 * ,/, %, // Multiply, divide, modulo and floor division
4 +, - Addition and subtraction
5 <= , < , > , >=, == , != Relational and Comparison operators
6 =, %=, /=, //=, -=, +=,

*=, **=
Assignment operators

7 is, is not Identity operators

8 in, not in Membership operators
9 not

Logical operators10 and

11 or

Note:
a) Parenthesis can be used to override the precedence of

operators. The expression within () is evaluated first.
b) For operators with equal precedence, the expression is

evaluated from left to right.

Example 5.9 How will Python evaluate the following
 expression?

 20 + 30 * 40

Ch 5.indd 105 15-Jun-21 3:10:07 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi106

 Solution:
 = 20 + (30 * 40) #Step 1
#precedence of * is more than that of +
 = 20 + 1200 #Step 2
 = 1220 #Step 3

Example 5.10 How will Python evaluate the following
expression?

 20 - 30 + 40
 Solution:

The two operators (–) and (+) have equal precedence.
Thus, the first operator, i.e., subtraction is applied
before the second operator, i.e., addition (left to right).
 = (20 – 30) + 40 #Step 1
 = -10 + 40 #Step 2
 = 30 #Step 3
Example 5.11 How will Python evaluate the following

expression?

 (20 + 30) * 40
 Solution:
 = (20 + 30) * 40 # Step 1
 #using parenthesis(), we have forced precedence
of + to be more than that of *
 = 50 * 40 # Step 2
 = 2000 # Step 3

Example 5.12 How will the following expression be
evaluated in Python?

 15.0 / 4 + (8 + 3.0)
 Solution:
 = 15.0 / 4 + (8.0 + 3.0) #Step 1
 = 15.0 / 4.0 + 11.0 #Step 2
 = 3.75 + 11.0 #Step 3
 = 14.75 #Step 4

5.10 statement

In Python, a statement is a unit of code that the Python
interpreter can execute.
Example 5.13

>>> x = 4 #assignment statement
>>> cube = x ** 3 #assignment statement
>>> print (x, cube) #print statement
4 64

notes

Ch 5.indd 106 08-Apr-19 12:35:12 PM

Reprint 2025-26

GettinG Started with Python 107

5.11 InPut and outPut
Sometimes, a program needs to interact with the user’s
to get some input data or information from the end user
and process it to give the desired output. In Python, we
have the input() function for taking the user input.
The input() function prompts the user to enter data.
It accepts all user input as string. The user may enter
a number or a string but the input() function treats
them as strings only. The syntax for input() is:

input ([Prompt])
Prompt is the string we may like to display on the

screen prior to taking the input, and it is optional. When
a prompt is specified, first it is displayed on the screen
after which the user can enter data. The input() takes
exactly what is typed from the keyboard, converts it into
a string and assigns it to the variable on left-hand side
of the assignment operator (=). Entering data for the
input function is terminated by pressing the enter key.
Example 5.14

>>> fname = input("Enter your first name: ")
Enter your first name: Arnab
>>> age = input("Enter your age: ")
Enter your age: 19
>>> type(age)
<class 'str'>

The variable fname will get the string ‘Arnab’, entered
by the user. Similarly, the variable age will get the string
‘19’. We can typecast or change the datatype of the string
data accepted from user to an appropriate numeric
value. For example, the following statement will convert
the accepted string to an integer. If the user enters any
non-numeric value, an error will be generated.

Example 5.15
#function int() to convert string to integer
>>> age = int(input("Enter your age:"))
Enter your age: 19
>>> type(age)
<class 'int'>

Python uses the print() function to output data to
standard output device — the screen. We will learn about
function in Chapter 7. The function print() evaluates the
expression before displaying it on the screen. The print()

notes

Ch 5.indd 107 08-Apr-19 12:35:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi108

outputs a complete line and then moves to the next line
for subsequent output. The syntax for print() is:

print(value [, ..., sep = ' ', end = '\n'])

• sep: The optional parameter sep is a separator
between the output values. We can use a
character, integer or a string as a separator. The
default separator is space.

• end: This is also optional and it allows us to
specify any string to be appended after the last
value. The default is a new line.

Example 5.16

Statement Output
print("Hello") Hello

print(10*2.5) 25.0
print("I" + "love" + "my" +
"country")

Ilovemycountry

print("I'm", 16, "years old") I'm 16 years old

The third print function in the above example is
concatenating strings, and we use + (plus) between
two strings to concatenate them. The fourth print
function also appears to be concatenating strings but
uses commas (,) between strings. Actually, here we are
passing multiple arguments, separated by commas to
the print function. As arguments can be of different
types, hence the print function accepts integer (16)
along with strings here. But in case the print statement
has values of different types and ‘+’ is used instead of
comma, it will generate an error as discussed in the
next section under explicit conversion.

5.12 tyPe conVersIon

Consider the following program
num1 = input("Enter a number and I'll double
it: ")
num1 = num1 * 2
print(num1)

The program was expected to display double the value
of the number received and store in variable num1. So if
a user enters 2 and expects the program to display 4 as
the output, the program displays the following result:

Enter a number and I'll double it: 2
22

Observe that a plus
sign does not add any
space between the two
strings while a comma

inserts a space between
two strings in a print

statement.

Ch 5.indd 108 08-Apr-19 12:35:12 PM

Reprint 2025-26

GettinG Started with Python 109

This is because the value returned by the input
function is a string ("2") by default. As a result, in
statement num1 = num1 * 2, num1 has string value and
* acts as repetition operator which results in output as
"22". To get 4 as output, we need to convert the data
type of the value entered by the user to integer. Thus,
we modify the program as follows:

num1 = input("Enter a number and I'll double
it: ")
num1 = int(num1) #convert string input to
 #integer
num1 = num1 * 2
print(num1)

Now, the program will display the expected output
as follows:

Enter a number and I'll double it: 2
4

Let us now understand what is type conversion and
how it works. As and when required, we can change
the data type of a variable in Python from one type to
another. Such data type conversion can happen in two
ways: either explicitly (forced) when the programmer
specifies for the interpreter to convert a data type
to another type; or implicitly, when the interpreter
understands such a need by itself and does the type
conversion automatically.

5.12.1 Explicit Conversion
Explicit conversion, also called type casting happens
when data type conversion takes place because the
programmer forced it in the program. The general form
of an explicit data type conversion is:

(new_data_type) (expression)
With explicit type conversion, there is a risk of loss

of information since we are forcing an expression to be
of a specific type. For example, converting a floating
value of x = 20.67 into an integer type, i.e., int(x)
will discard the fractional part .67. Following are some
of the functions in Python that are used for explicitly
converting an expression or a variable to a different type.

Table 5.10 Explicit type conversion functions in Python

Function Description
int(x) Converts x to an integer
float(x) Converts x to a floating-point number

notes

Ch 5.indd 109 08-Apr-19 12:35:12 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi110

Program 5-5 Program of explicit type conversion from
int to float.

#Program 5-5
#Explicit type conversion from int to float
num1 = 10
num2 = 20
num3 = num1 + num2
print(num3)
print(type(num3))
num4 = float(num1 + num2)
print(num4)
print(type(num4))

Output:
30
<class 'int'>
30.0
<class 'float'>

Program 5-6 Program of explicit type conversion from
float to int.

#Program 5-6
#Explicit type conversion from float to int
num1 = 10.2
num2 = 20.6
num3 = (num1 + num2)
print(num3)
print(type(num3))
num4 = int(num1 + num2)
print(num4)
print(type(num4))

Output:
30.8
<class 'float'>
30
<class 'int'>

Program 5-7 Example of type conversion between
numbers and strings.

#Program 5-7
#Type Conversion between Numbers and Strings
priceIcecream = 25
priceBrownie = 45
totalPrice = priceIcecream + priceBrownie
print("The total is Rs." + totalPrice)

str(x) Converts x to a string representation
chr(x) Converts ASCII value of x to character
ord(x) returns the character associated with the

ASCII code x

Ch 5.indd 110 15-Jun-21 11:15:29 AM

Reprint 2025-26

GettinG Started with Python 111

On execution, program 5-7 gives an error as shown
in Figure 5.11, informing that the interpreter cannot
convert an integer value to string implicitly. It may
appear quite intuitive that the program should convert
the integer value to a string depending upon the usage.
However, the interpreter may not decide on its own
when to convert as there is a risk of loss of information.
Python provides the mechanism of the explicit type
conversion so that one can clearly state the desired
outcome. Program 5-8 works perfectly using explicit
type casting:
Program 5-8 Program to show explicit type casting.

#Program 5-8
#Explicit type casting
priceIcecream = 25
priceBrownie = 45
totalPrice = priceIcecream + priceBrownie
print("The total in Rs." + str(totalPrice))

Output:
The total in Rs.70

Similarly, type casting is needed to convert float to
string. In Python, one can convert string to integer or
float values whenever required.
Program 5-9 Program to show explicit type conversion.

#Program 5-9
#Explicit type conversion
icecream = '25'
brownie = '45'
#String concatenation
price = icecream + brownie
print("Total Price Rs." + price)
#Explicit type conversion - string to integer

 Figure 5.11: Output of program 5-7

Ch 5.indd 111 08-Apr-19 12:35:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi112

price = int(icecream)+int(brownie)
print("Total Price Rs." + str(price))

Output:
Total Price Rs.2545
Total Price Rs.70

5.12.2 Implicit Conversion
Implicit conversion, also known as coercion, happens
when data type conversion is done automatically by
Python and is not instructed by the programmer.
Program 5-10 Program to show implicit conversion from

int to float.
#Program 5-10
#Implicit type conversion from int to float

num1 = 10 #num1 is an integer
num2 = 20.0 #num2 is a float
sum1 = num1 + num2 #sum1 is sum of a float
and an integer
print(sum1)
print(type(sum1))

Output:
30.0
<class 'float'>

In the above example, an integer value stored in
variable num1 is added to a float value stored in variable

num2, and the result was automatically converted to
a float value stored in variable sum1 without explicitly
telling the interpreter. This is an example of implicit data
conversion. One may wonder why was the float value
not converted to an integer instead? This is due to type
promotion that allows performing operations (whenever
possible) by converting data into a wider-sized data type
without any loss of information.

5.13 debuggIng

A programmer can make mistakes while writing a
program, and hence, the program may not execute or
may generate wrong output. The process of identifying
and removing such mistakes, also known as bugs or
errors, from a program is called debugging. Errors
occurring in programs can be categorised as:

i) Syntax errors
ii) Logical errors
iii) Runtime errors

Ch 5.indd 112 08-Apr-19 12:35:13 PM

Reprint 2025-26

GettinG Started with Python 113

5.13.1 Syntax Errors
Like other programming languages, Python has its
own rules that determine its syntax. The interpreter
interprets the statements only if it is syntactically (as
per the rules of Python) correct. If any syntax error is
present, the interpreter shows error message(s) and stops
the execution there. For example, parentheses must
be in pairs, so the expression (10 + 12) is syntactically
correct, whereas (7 + 11 is not due to absence of right
parenthesis. Such errors need to be removed before the
execution of the program

5.13.2 Logical Errors
A logical error is a bug in the program that causes
it to behave incorrectly. A logical error produces an
undesired output but without abrupt termination of the
execution of the program. Since the program interprets
successfully even when logical errors are present in it, it
is sometimes difficult to identify these errors. The only
evidence to the existence of logical errors is the wrong
output. While working backwards from the output of
the program, one can identify what went wrong.

For example, if we wish to find the average of two
numbers 10 and 12 and we write the code as 10 + 12/2,
it would run successfully and produce the result 16.
Surely, 16 is not the average of 10 and 12. The correct
code to find the average should have been (10 + 12)/2
to give the correct output as 11.

Logical errors are also called semantic errors as they
occur when the meaning of the program (its semantics)
is not correct.

5.13.3 Runtime Error
A runtime error causes abnormal termination of
program while it is executing. Runtime error is when the
statement is correct syntactically, but the interpreter
cannot execute it. Runtime errors do not appear until
after the program starts running or executing.

For example, we have a statement having division
operation in the program. By mistake, if the denominator
entered is zero then it will give a runtime error like
“division by zero”.

Let us look at the program 5-11 showing two types
of runtime errors when a user enters non-integer value

Ch 5.indd 113 08-Apr-19 12:35:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi114

or value ‘0’. The program generates correct output when
the user inputs an integer value for num2.
Program 5-11 Example of a program which generates

runtime error.

#Program 5-11
#Runtime Errors Example
num1 = 10.0
num2 = int(input("num2 = "))
#if user inputs a string or a zero, it leads
to runtime error
print(num1/num2)

 Figure 5.11: Output of program 5-11

summary

• Python is an open-source, high level, interpreter-
based language that can be used for a multitude of
scientific and non-scientific computing purposes.

• Comments are non-executable statements in
a program.

• An identifier is a user defined name given to a
variable or a constant in a program.

• The process of identifying and removing errors
from a computer program is called debugging.

• Trying to use a variable that has not been assigned
a value gives an error.

• There are several data types in Python — integer,
boolean, float, complex, string, list, tuple, sets,
None and dictionary.

Ch 5.indd 114 08-Apr-19 12:35:13 PM

Reprint 2025-26

GettinG Started with Python 115

exercIse

1. Which of the following identifier names are invalid
and why?

 i Serial_no. v Total_Marks

 ii 1st_Room vi total-Marks

 iii Hundred$ vii _Percentage

 iv Total Marks viii True

2. Write the corresponding Python assignment
statements:
a) Assign 10 to variable length and 20 to variable

breadth.
b) Assign the average of values of variables length and

breadth to a variable sum.
c) Assign a list containing strings ‘Paper’, ‘Gel Pen’,

and ‘Eraser’ to a variable stationery.
d) Assign the strings ‘Mohandas’, ‘Karamchand’, and

‘Gandhi’ to variables first, middle and last.
e) Assign the concatenated value of string

variables first, middle and last to
variable fullname. Make sure to incorporate
blank spaces appropriately between different parts
of names.

3. Write logical expressions corresponding to the
following statements in Python and evaluate the
expressions (assuming variables num1, num2, num3,
first, middle, last are already having meaningful
values):
a) The sum of 20 and –10 is less than 12.
b) num3 is not more than 24.

notes• Datatype conversion can happen either explicitly
or implicitly.

• Operators are constructs that manipulate the
value of operands. Operators may be unary
or binary.

• An expression is a combination of values, variables
and operators.

• Python has input() function for taking user
input.

• Python has print() function to output data to a
standard output device.

Ch 5.indd 115 08-Apr-19 12:35:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi116

c) 6.75 is between the values of integers num1 and
num2.

d) The string ‘middle’ is larger than the string ‘first’ and
smaller than the string ‘last’.

e) List Stationery is empty.

4. Add a pair of parentheses to each expression so
that it evaluates to True.

a) 0 == 1 == 2

b) 2 + 3 == 4 + 5 == 7

c) 1 < -1 == 3 > 4

5. Write the output of the following:
a) num1 = 4

num2 = num1 + 1
num1 = 2
print (num1, num2)

b) num1, num2 = 2, 6
num1, num2 = num2, num1 + 2
print (num1, num2)

c) num1, num2 = 2, 3
num3, num2 = num1, num3 + 1
print (num1, num2, num3)

6. Which data type will be used to represent the
following data values and why?

a) Number of months in a year

b) Resident of Delhi or not

c) Mobile number
d) Pocket money
e) Volume of a sphere
f) Perimeter of a square
g) Name of the student
h) Address of the student

7. Give the output of the following when num1 = 4,
num2 = 3, num3 = 2

a) num1 += num2 + num3
print (num1)

b) num1 = num1 ** (num2 + num3)
print (num1)

c) num1 **= num2 + num3

d) num1 = '5' + '5'
print(num1)

notes

Ch 5.indd 116 08-Apr-19 12:35:13 PM

Reprint 2025-26

GettinG Started with Python 117

e) print(4.00/(2.0+2.0))

f) num1 = 2+9*((3*12)-8)/10
print(num1)

g) num1 = 24 // 4 // 2
print(num1)

h) num1 = float(10)
print (num1)

i) num1 = int('3.14')
print (num1)

j) print('Bye' == 'BYE')

k) print(10 != 9 and 20 >= 20)

l) print(10 + 6 * 2 ** 2 != 9//4 -3 and 29
>= 29/9)

m) print(5 % 10 + 10 < 50 and 29 <= 29)

n) print((0 < 6) or (not(10 == 6) and
(10<0)))

8. Categorise the following as syntax error, logical
error or runtime error:

a) 25 / 0

b) num1 = 25; num2 = 0; num1/num2

9. A dartboard of radius 10 units and the wall it is
hanging on are represented using a two-dimensional
coordinate system, with the board’s center at
coordinate (0,0). Variables x and y store the
x-coordinate and the y-coordinate of a dart that
hits the dartboard. Write a Python expression using
variables x and y that evaluates to True if the dart
hits (is within) the dartboard, and then evaluate the
expression for these dart coordinates:

a) (0,0)

b) (10,10)

c) (6, 6)

d) (7,8)

10. Write a Python program to convert temperature in
degree Celsius to degree Fahrenheit. If water boils
at 100 degree C and freezes as 0 degree C, use the
program to find out what is the boiling point and
freezing point of water on the Fahrenheit scale.

 (Hint: T(°F) = T(°C) × 9/5 + 32)

11. Write a Python program to calculate the amount
payable if money has been lent on simple interest.

notes

Ch 5.indd 117 08-Apr-19 12:35:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi118

Principal or money lent = P, Rate of interest = R%
per annum and Time = T years. Then Simple Interest
(SI) = (P x R x T)/ 100.

 Amount payable = Principal + SI.
 P, R and T are given as input to the program.
12. Write a program to calculate in how many days a

work will be completed by three persons A, B and
C together. A, B, C take x days, y days and z days
respectively to do the job alone. The formula to
calculate the number of days if they work together
is xyz/(xy + yz + xz) days where x, y, and z are given
as input to the program.

13. Write a program to enter two integers and perform
all arithmetic operations on them.

14. Write a program to swap two numbers using a
third variable.

15. Write a program to swap two numbers without
using a third variable.

16. Write a program to repeat the string ‘‘GOOD
MORNING” n times. Here ‘n’ is an integer
entered by the user.

17. Write a program to find average of three numbers.
18. The volume of a sphere with radius r is 4/3πr3. Write

a Python program to find the volume of spheres with
radius 7cm, 12cm, 16cm, respectively.

19. Write a program that asks the user
to enter their name and age. Print a
message addressed to the user that tells the user
the year in which they will turn 100 years old.

20. The formula E = mc2 states that the
equivalent energy (E) can be calculated as the
mass (m) multiplied by the speed of light (c = about
3×108 m/s) squared. Write a program that accepts
the mass of an object and determines its energy.

21. Presume that a ladder is put upright against
a wall. Let variables length and angle store
the length of the ladder and the angle that
it forms with the ground as it leans against
the wall. Write a Python program to compute

notes

Ch 5.indd 118 08-Apr-19 12:35:13 PM

Reprint 2025-26

GettinG Started with Python 119

the height reached by the ladder on the
wall for the following values of length and angle:

a) 16 feet and 75 degrees
b) 20 feet and 0 degrees
c) 24 feet and 45 degrees
d) 24 feet and 80 degrees

case study-based QuestIon
Schools use “Student Management Information System”
(SMIS) to manage student-related data. This system
provides facilities for:

• recording and maintaining personal details of
students.

• maintaining marks scored in assessments and
computing results of students.

• keeping track of student attendance.
• managing many other student-related data. Let us

automate this process step by step.
Identify the personal details of students from your
school identity card and write a program to accept these
details for all students of your school and display them
in the following format.

notes

documentatIon tIPs
It is a fact that a properly documented program is
easy to read, understand and is flexible for future
development. Therefore, it is important that one pays
extra attention to documentation while coding. Let us
assess the documentation done by us in our case study
program and also find out whether our friends also pay
similar attention to documentation or not.

Ch 5.indd 119 08-Apr-19 12:35:13 PM

Reprint 2025-26

Computer SCienCe – ClaSS xi120

Following is a checklist of good documentation
points:
• Objective of the program is clearly stated in the

beginning.
• Objective of each function is clearly mentioned in

the beginning of each function.
• Comments are inserted at the proper place so as

to enhance the understandability and readability
of the program.
(Note: Over commenting doesn’t help)

• Variables and function names are meaningful and
appropriate.

• Single letter variable names are not used.
• Program name is meaningful.

(Note: It is not proper to use your name as program
name, for example, ‘raman. py’ or ‘namya.py’ to denote
your program code. It is more appropriate to use the
program name as ‘bankingProject.py’ for a banking
related program or ‘admProcess’ for an admission
related program.)

• Program code is properly indented.
• Same naming conventions are used throughout

the program.
(Note: Some of the naming conventions are firstNum,
first_num, to denote the variable having first number).

Let’s do this exercise for our peer’s case studies as
well and provide a feedback to them.

A relevant peer feedback helps in improving the
documentation of the projects. It also helps in identifying
our mistakes and enriches us with better ideas used
by others.

notes

Ch 5.indd 120 08-Apr-19 12:35:13 PM

Reprint 2025-26

	kecs1ps
	kecs101
	kecs102
	kecs103
	kecs104
	kecs105
	kecs106
	kecs107
	kecs108
	kecs109
	kecs110
	kecs111

